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In transonic flightwithin a certain range ofMachnumber andangle of attack, the flowfield becomes unstable, and it

produces an oscillating aerodynamic force: a phenomenon commonly known as transonic buffet. This load can inflict

severe damage on the structure of an aircraft wing, and so it is necessary to consider the buffet effect in supercritical

airfoil design. In the present work, the first objective is to find optimal profiles forminimizing the time-averaged drag

and buffet magnitude. The second objective is to compare new airfoils and derive insights for transonic supercritical

airfoil design to reducebuffet effect. TheOAT15Aairfoil is chosenas thebaselinedesign, and thenanumerical scheme

is developed to obtain time-averaged aerodynamic coefficients and buffet parameters. A geometry disturbance

method with smoothness check is introduced to develop a set of new airfoils. Simulations of the new airfoils are

conducted to populate the sample space for surrogate modeling. A neural network method is used to build the

surrogate models, which are then employed in a genetic algorithm to select optimized airfoils. Finally, the behavior

and physics of the optimal airfoils are simulated and analyzed.

Nomenclature

A = buffet magnitude
a∞ = far-field speed of sound
c = chord length
cd = drag coefficient
cdi = drag coefficient at ith step
cl = lift coefficient
cli = lift coefficient at ith step
cp = pressure coefficient
cd = time-averaged drag coefficient
cl = time-averaged lift coefficient
f = buffet frequency
fA = genetic algorithm buffet magnitude optimization object

function
fcd = genetic algorithm drag optimization object function
Gk = airfoil shape parameter for mode k
g = airfoil shape modification basic function
k = reduced frequency of buffet
M = Mach number
m = mean residual
Pc = genetic algorithm crossover probability
Pm = genetic algorithm mutation probability
pi = genetic algorithm constraint penalty function
R2 = coefficient of determination
s = airfoil profile
s�A = magnitude optimal airfoil

s�
Cd

= drag optimal airfoil

T = computational wall time
V∞ = far-field velocity magnitude
α = angle of attack
Δt = dimensionless time step
δt = dimensional time step
ε = relative error
ζi = relaxation coefficient of the constraints in the optimization

problem

λ = genetic algorithm initial population
σ = standard deviation

I. Introduction

I N 1947, Hilton and Fowler [1] detected periodic shock
oscillations in their transonic flow experiments for a low drag

airfoil. The authors also detected a thickening of the boundary layer
downstream behind the shock wave. Although a clear physical
understanding of this shock-wave/boundary-layer interaction was
not achieved, their result initiated a new research direction into
transonic buffet.
In transonic flowwith a certain range of attack angle, a shockwave

is formed on the airfoil when the Mach numberM exceeds a critical
value. As the Mach number increases, the shock wave moves toward
the trailing edge of the airfoil. A separation zone behind the shock
appears and grows in this process. Buffet takes place when the
separation zone extends to the trailing edge and interacts with the
shock. Figure 1 illustrates the interaction between the shock wave
and the boundary layer for the OAT15A airfoil at M � 0.73, and
α � 3.5 deg. The resulting oscillating aerodynamic force acts on the
wing structure, and it candegrade aircraft performance.More important,
this force fluctuation can severely affect the maneuverability and the
safety of the aircraft. Because of this hazard, investigation into the onset
and physics of buffet remains an important research direction for
aerodynamics and transonic flight.
Since the discovery of transonic buffet, significant research has

been devoted to investigating the phenomenon. Lee [2] provided a
comprehensive review of theoretical and experimental studies of
buffet from 1950 to 2000. Deck [3] conducted a numerical study
using a detached-eddy-simulation model to capture the underlying
flow physics. Xing et al. [4] examined the effects of time and grid
resolution on computational accuracy. Crouch et al. [5,6] employed a
flowfield global stability theory to analyze and predict the onset of
buffet. Kenway and Martins [7] introduced such techniques as a
separation sensor predictor and the lift curve break method for
predicting buffet onset.
Buffet control has also long been an area of active research. A

notable example of a buffet control mechanism is the shock control
bump (SCB), which enhances wing or airfoil buffet behavior through
modification of the upper surface shape to manipulate the airflow
near the shockwave.Bruce andColliss [8] provided an overall review
of SCB research. The advantages and limitations of SCB were
examined; and the challenges to SCB performance, including its
sensitivity to flow conditions, were identified.
In the present work, a hybrid simulation–surrogate optimization

method for supercritical airfoil design is developed. The objective is
to reduce the drag and buffet magnitude, as well as to improve on the
performance of the benchmark airfoil: OAT15A. Figure 2 illustrates
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the overall process of airfoil design and optimization. First, a

numerical scheme is implemented to detect and explore buffet

behavior at the design flow condition (M � 0.73, α � 3.5 deg).
Results are then compared with existing experimental and

computational data to verify the numerical scheme. Second, an

airfoil shape modification method with 10 deg of freedom is

developed to generate a set of new airfoils. We also introduce and

impose a smoothness criterion on the new airfoils, which is generated

in the form of a constraint on the second-order derivative of its

geometry. This method eliminates the generation of “bumpy” airfoils

before the numerical runs. Third, numerical simulations are

performed for these new airfoils. Fourth, neural network (NN)

surrogate models are established for mean aerodynamic coefficients

and buffet parameters based on the numerical results of the new

airfoils. Fifth, genetic algorithm (GA) optimization is conducted to

identify the optimal airfoil profiles that minimize both the time-
averaged drag coefficient s�cd , and the buffet magnitude s�A. To verify
the accuracy of the optimal surrogatemodels, the behaviors of s�cd and
s�A at the design flow condition are simulated and compared with the

values predicted by neural network modeling. Finally, the optimal
airfoil profiles are compared with the benchmark airfoil: OAT15A.
Their similarities and differences, in terms of their geometries, are
discussed.
The remainder of this work is organized as follow. In Sec. II, we

define the aerodynamics and buffet state variables for the NN
modeling and optimization approach. In Sec. III, two optimization
problems are stated, namely, drag reduction and minimization of
buffet magnitude. In Sec. IV, the numerical scheme is introduced, and
the computational method is verified through simulation of the
OAT15A airfoil atM � 0.73, and α � 3.5 deg. In Sec. V, the airfoil-
profile perturbation method is introduced and a second-order
smoothness criterion is used to generate a large set of new airfoils. In
Sec. VI, NN modeling is used to build surrogate models for state
variables. In Sec. VII, we use a GA to present the airfoil geometry
optimization. In Sec. VIII, we analyze and discuss the optimal shapes
(s�A and s�cd ). Section IX presents the conclusions.

II. Buffet and Aerodynamics Parameters

In this section, we define metrics to measure the buffet and
aerodynamics behaviors of the airfoil geometry. The time-averaged
values of the lift and drag coefficients (cl, cd) are defined by Eqs. (1)
and (2), respectively, to measure the aerodynamic behavior for an
airfoil. The computational result presented in the following (Sec. IV)
indicates the existence of transient and steadily oscillating buffet
states; the steady oscillating state is the focus here. Leishman [9]
proposed the concept of reduced frequency as a nondimensional
frequency of aerodynamic or aeroelasticity phenomena. This concept
is adopted for the dominant frequency in the lift coefficient spectral
content. The relation between the dimensional frequency f and the
reduced frequency k is shown in Eq. (3):

Fig. 1 Shock-wave/boundary-layer interaction for OAT15A airfoil at

M � 0.73, and α � 3.5 deg.

Fig. 2 Process for airfoil design and optimization.
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cl �
Σcliδti
Σδti

(1)

cd � Σcδti
Σδti

(2)

k ≜
�
π × c

V∞

�
× f (3)

The buffet magnitude A is defined as the amplitude of the
aerodynamic force oscillation. From the computational results in
Sec. VI, because the time-averaged lift coefficient is more than
10 times the mean drag coefficient for the OAT15A airfoil at the
design flow condition, we will ignore the contribution of the drag
component to the total force oscillation. The buffet magnitude is then
characterized using the amplitude of the cl oscillation in a steady
oscillating state, as shown in Eq. (4):

A � Δclmax (4)

III. Problem Statement

The major task in airfoil design and optimization is to reduce the
drag coefficient while producing a required amount of lift.
Furthermore, if the buffet phenomenon is considered, the magnitude
of the buffet should be reduced and the oscillation frequency
constrained. Airfoil optimization should therefore 1) reduce the time-
averaged drag coefficient cd, and 2) reduce the buffet magnitude A.
Note that k, A, cl, and cd are set as state variables. The design
variables are airfoil shape parameters (Gi), whichwill be discussed in
Sec. V. The optimization problem is stated in Eqs. (5) and (6). To
ensure that the optimal shapes will be superior to the benchmark
airfoil in all aspects, we use state variables of the OAT15A airfoil
(clOAT, cdOAT, AOAT, kOAT), and we employ relaxation coefficients
(ζcl , ζcd , ζA, ζk) to form the inequality constraints of the optimization
problem.A genetic algorithm is applied to search for a global optimal
design in Sec. VII.
Problem statement 1:

minimize cd�Gi�
with regard to Gi

subject to cl ≥ �1� ζcl�clOAT
0 ≤ A ≤ �1 − ζA�AOAT

0 ≤ k ≤ �1 − ζk�kOAT

(5)

Problem statement 2:

minimize A�Gi�
with regard to Gi

subject to cl ≥ �1� ζcl�clOAT
0 ≤ cd ≤ �1 − ζcd�cdOAT
0 ≤ k ≤ �1 − ζk�kOAT

(6)

IV. Numerical Framework, Results, and Validation

In this section, a numerical scheme is implemented to explore the
buffet and aerodynamics state parameters for the OAT15A airfoil. The
results are then validated against experimental and computational data
on the OAT15A airfoil to confirm the suitability of the scheme.

A. Numerical Scheme

Figure 3 illustrates the numerical grid, which is a structural C grid,
with 26,404 grid nodes and 26,066 grid cells, as well as a boundary at
�75 chord lengths. Two-hundred nodes on the airfoil surface are
employed to calculate the lift and drag coefficient. A 0.6%-thick
trailing edge ismade in the computational grid. Barakos andDrikakis

[10] noted that the Spalart–Allmaras (SA) turbulence model [11]

could capture the buffet phenomenon, at a fair computational cost.

The SA model is therefore used here, with the same constants as in

Ref. [12]. The Sutherland viscous model [13] for ideal gas is used.

Time-accurate calculations are required to capture the buffet

phenomenon, and a fine time scheme is required. The physical time

step δt is nondimensionalized to Δt as in Eq. (7). The dimensionless

chord length is c � 1. The mean value and fluctuation parameters of

cl are considered, with different time steps, at the design flow

condition. The computation is performed by means of the least-

square cell-based gradient method with second-order upwind spatial

discretization using Fluent software on a 2.5 GHz dual processor and

2.4 GB system memory machine. Numerical results are given in

Table 1. Figure 4 shows the computational wall time T with different

time-step sizes Δt.

Fig. 3 C-type computational grid for OAT15A airfoil.

Table 1 Calculated time-averaged lift coefficient and

buffet behaviors with different numerical time steps Δt

Δt cl A f

0.10 1.038 0 0
0.08 1.039 0 0
0.06 1.039 0.0036 69 Hz
0.04 1.041 0.0163 69 Hz
0.02 1.036 0.0316 69 Hz
0.01 1.037 0.0783 69 Hz
0.002 1.037 0.0796 69 Hz
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The numerical scheme was not able to capture the buffet
phenomenon for nondimensional time steps ofΔt ≥ 0.08, although it
was resolved computationally for Δt ≤ 0.06. However, although cl
and f appeared insensitive to Δt, the buffet amplitude A exhibited
significant variations between Δt � 0.02 and 0.06. It leveled off for
Δt ≤ 0.01. The computational wall time decreased dramatically with
Δt for Δt ≤ 0.02, and it reached a minimum at Δt � 0.06. It varied
slightly for 0.02 ≤ Δ ≤ 0.10.:

Δt � δt ×
a∞
c

(7)

As a tradeoff between the numerical accuracy and efficiency,
therefore, a nondimensional time step of Δt � 0.01, corresponding
to the physical step of δt � 2.94 × 10−5 s, was chosen for the present
computations. This choice allowed for accurate capturing of the
different parameters of the buffet phenomenon at a reasonable
computational cost.
Because the new airfoils generated here are based on small

perturbations around thegeometryof the benchmark airfoil (OAT15A),
the same computational scheme and parameters are applied to these
new airfoils.

B. Numerical Result for OAT15A Airfoil

The aerodynamic behaviors of the benchmark OAT15A airfoil at
design flow condition are examined to assess the validity of the
numerical scheme. Figure 5 shows the time histories of the lift and
drag coefficient. They both oscillate periodically, with themagnitude
growing to limit-cycle values at a dimensional time of t ≈ 0.12 s.
Given that δt ≈ 3 × 10−5 s in the present study, 5000 time stepswith a
real-time interval of 0.15 s are enough to reach a steady oscillation
state. The entire calculation runs for 11,000 steps, or 10 buffet
periods. This allows for the collection of a statistically meaningful
dataset. The FFT analysis for cl and cd are shown in Fig. 6.
The calculated cl, A, and f in the steady oscillating state are

compared with both experimental [14] and computational [4] results
for the OAT15A airfoil at the same flow condition in Table 2. The
relative errors for the measured frequency are less than 1.5%, which
are much better than the prediction of an existing study [4].

V. Airfoil Shape Modification and New Airfoil
Generation

In this section, we develop an airfoil geometry modification
method with a smoothness criterion, and we generate a new set of
airfoils for the sample space of surrogate modeling. To modify the
profile and populate the design spacewith new airfoils, the upper and
lower surfaces of the OAT15A airfoil are discretized byΔx � 0.008
along the chord length direction. In Ref. [15], Drela suggested a set of
trigonometric functions [Eqs. (8) and (9)] to modify the airfoil shape,

where gk�x� was a basic function with mode number k, Gk was a

design parameter, and D � 0.01 was the amplitude of disturbance.

Here, five modes are used for both the upper and lower surfaces. The

design space has 10 deg of freedom:

gk�x� �
1

k
sin�kπx� (8)

1.8
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Time, s
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Fig. 5 Time evolution of lift and drag coefficients of OAT15A airfoil at

the design flow condition.
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Fig. 4 Computational wall time with different numerical time steps Δt
for numerical simulation of OAT15A airfoil.

Table 2 Computational and experimental results for time-

averaged lift coefficient, buffet magnitude, and frequencya

cl A f

Present study 1.037 0.0881 69 Hz
Numerical result [4] 1.015 0.075 77 Hz
Experimental result [14] N/A N/A 70 Hz
Relative error vs reference numerical data 1.2% 14.8% 10.3%
Relative error vs experiment results N/A N/A 1.4%

aN/A denotes “not applicable.”
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Fig. 6 Power spectral density of calculated lift and drag coefficients.

4346 XU, SALEH, ANDYANG

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

O
ct

ob
er

 1
8,

 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
75

73
 



δy � D
XK
k�1

Gkgk�x� (9)

Although this set of basic functions guarantees the orthogonality
for the design space, it results in bumpy shapes for the airfoil surface.
Drela [15] noted that the bumpy shape could increase airfoil drag in
offdesign flow conditions and contribute to stall. The following
criteria are used to eliminate inferior profiles before numerical
simulation of the new airfoils:
Criteria 1: The sign of d2y∕dx2 changes once on the upper surface
Criteria 2: The sign of d2y∕dx2 changes twice on the lower

surface.
Because bumpiness is reflected in a sign change of the second-

order derivative on the airfoil surface, these criteria eliminate the
issue. Furthermore, the second criterion can maintain an aft camber

for the lower surface, which is a key element in supercritical airfoil
design to obtain lift without strong shocks [16]. To implement these
criteria computationally, the second-order derivative is calculated by
a forward and a backward finite difference method at the leading and
trailing points, respectively, and a central difference scheme is used
for interior nodes. Using this shape perturbation method and
smoothness criteria, a new set of airfoils with randomG1 toG10 from
−1 to 1 is generated. Considering the computational cost, we produce
118 geometries for the set of new airfoils, as shown in Fig. 7. The
boundaries of the design variables are given in Table 3.
Calculations were conducted for all 118 airfoil profiles. Figure 8

shows the histograms of the calculated state variables in the sample
space. These ranges are given in Table 4. As expected, the time-
averaged drag coefficient cd and buffet magnitude A values are
sensitive to airfoil geometry.

1.0
x

y

0.2

0.0

-0.2
0.0 0.2 0.4 0.6 0.8

Fig. 7 New airfoil profiles generated with smoothness criteria.

Table 3 Boundaries for design variables of generated airfoils

Variable G1 G2 G3 G4 G5 G6 G7 G9 G10

Minimum 0.43 −0.35 −0.14 −0.18 −0.13 −1 −1 −0.57 −0.42
Maximum 1.0 0.54 0.47 0.21 0.23 1 0.5 1 0.69

Fig. 8 Distribution of calculated aerodynamic and buffet parameters of 118 new airfoils.

Table 4 Ranges of cl, cd, A and k

cl cd A k

Minimum 0.904 0.0082 0.0418 0.776
Maximum 1.074 0.0190 0.1720 1.063
Mean 0.994 0.0145 0.0834 0.929
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VI. Neural-Network-Based Surrogate Models

In this section, surrogate models are constructed for new
airfoils based on the numerical results using a neural network

fitting method. The mean square error (MSE) and R2 are used to

assess the quality and effectiveness of the surrogate models. The

MATLAB Neural Network Toolbox is employed to construct the

fully connected network model based on the Levenberg–
Marquardt backpropagation method [17]. The structure is a

feedforward neural network with one hidden layer. In the

construction of the neural network, 80% of the 118 numerical

cases are randomly selected as training data, and 20% are used for

testing and validation. The neuron numbers are chosen by the
tradeoff between optimal fitting and computational cost.

Although a model with more hidden neurons improves the

fitting of the training data, overfitting happens for a large number

of hidden neurons. Figure 9 shows the ratio of the MSE between
the testing and training datasets, and the overall MSE for the 118

new airfoil shapes as a function of neuron numbers. The model

performance is approximately constant or declines from 10

hidden neurons, and the MSE ratio increases dramatically.

Meanwhile, a complex model with unnecessary neurons increases
the computational workload for optimization. The Gnana and

Deepa criteria [18] are applied for neuron number selection.

Given the size of the input and output variables, 5–10 neurons are

tested in the hidden layer, as shown in Fig. 10. Based on the MSE

value, models with five hidden neurons for cd and A, seven for k,
and nine for cl are used. Figures 11 and 12 show the histograms

and normal probabilities of the surrogate model residuals for the

aerodynamic and buffet parameters, respectively. The residuals lie

on an approximately Gaussian distribution with a mean of zero.

The MSE and R2 of the models are given in Table 5. The quality
of the neural network surrogate is compared with the second-

order polynomial backward elimination stepwise regression

method and the Gaussian process kriging method through the

MSE and R2 value (see the Appendix).

VII. Genetic Algorithm Global Optimization

The two constrained optimization problem statements for cd andA
are provided by Eqs. (5) and (6). AGA [19] is applied in this section

to obtain the optimal airfoil design for each problem. It is a global

optimizer, and it suffers drawbacks associated with its computational

Fig. 9 Ratio of testing to training MSE and total MSE for 118 new shapes: trend with hidden neuron number.

Hidden Neuron Number

5

3

2

1
6 7 8 9 10

Fig. 10 MSE of state variables for different neural network surrogate

topologies.

Table 5 MSE and R2 for NN-based surrogate models of

118 new airfoils

cl cd A k

MSE 1.26 × 10−4 1.16 × 10−7 1.45 × 10−4 2.39 × 10−4

R2 0.865 0.974 0.791 0.914
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Fig. 11 Histograms of surrogate model residuals for aerodynamic and buffet parameters of 118 new airfoils.

Fig. 12 Normal probabilities of surrogate model residuals for aerodynamic and buffet parameters of 118 new airfoils.
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cost. For the two problems of concern, the parameters must be
carefully selected to retain accuracy and reduce computational
expense. Figure 13 schematically shows the GA used in the present
study. A 10-bit-length chromosome is used to provide a resolution
of 0.001, a crossover probability of Pc � 0.7, and a mutation
probability of Pm � 0.01. The initial population is generated
randomly with λ � 300, and a single point crossover is applied.
The maximum generation number is genmax � 300, and the GA stops
after 50 continuous generations with the same optimal individual
(isame � 50). The optimization constraints are added to the fitness

function through the penalty function from Eqs. (10–12) with
r � 10;000. The drag and buffet magnitude optimizations are
conducted with different values of ζk, ζcl , ζcd , and ζA, as given in
Tables 6 and 7.
1) Because k is a discrete value from the fast Fourier transform

analysis, theNNmodel outputs the expectation ofk. A low-frequency
oscillation is preferred because it is less harmful to the structure. We
select ζk � 0 and 0.08, which correspond to f � 69 and 64 Hz, and
k � 0.865 and 0.795.
2) The time-averaged lift coefficient cl is a strong constraint on

both optimization problems. If we set ζcl > 0.05 and cl > 1.089, no
feasible optimal solution is available. On the other hand, ζA is a loose
constraint in drag optimization.
3) For the drag minimization with ζk � 0, the ζcl � 0.05 case

reduces 38% of A, and it only raises 5% of cd over the ζcl � 0.01
case. Therefore, ζk � 0, ζcl � 0.05 is a good selection for relaxation
parameters. For buffet magnitude optimization, because A increases
rapidly with ζcd , ζcl � 0.01, ζcd � 0.01, and ζk � 0 are reasonable
choices:

pi � max�0; �i − �1 − ζi�iOAT	��i � cl; cd; k; A� (10)

fcd � cd � r × �pcl � 10pA � pk� (11)

fA � A� r × �pcl � 10pcd � pk� (12)

VIII. Results and Discussion

This section first presents the optimization results based on the
surrogate models. These NN-optimized airfoil models are tested and
verified with numerical simulations, and then the two optimal airfoil
shapes are discussed: the time-averaged drag coefficient optimal
shape s�cd , and the buffetmagnitude optimal shape s�A. Suggestions for
supercritical airfoil design are also offered.

A. Optimization Results

Table 8 shows the results for the design parameters (G1–G10) of the
surrogate-based optimal airfoils.

B. Numerical Results for Optimal Airfoils

Once the surrogate-based optimal airfoils are obtained, they are
examined using the calculated time-averaged drag coefficient cd and
buffet magnitude A at Ma � 0.73 and α � 3.5°. Tables 9 and 10

Fig. 13 Schematic of genetic algorithm optimization.

Table 6 Optimization results of time-

averageddrag coefficientwith different relaxation

coefficients

ζcl ζk ζA cl cd A k

0.01 0 0.01 1.054 0.0105 0.070 0.865
0.01 0 0.1 1.054 0.0105 0.070 0.865
0.01 0 0.2 1.054 0.0105 0.070 0.865
0.01 0.08 0.01 1.047 0.0126 0.063 0.795
0.01 0.08 0.1 1.047 0.0126 0.063 0.795
0.01 0.08 0.2 1.047 0.0126 0.063 0.795
0.05 0 0.01 1.088 0.0111 0.043 0.865
0.05 0 0.1 1.088 0.0111 0.043 0.865
0.05 0 0.2 1.088 0.0111 0.043 0.865
0.05 0.08 0.01 1.089 0.0118 0.045 0.795
0.05 0.08 0.1 1.089 0.0118 0.045 0.795
0.05 0.08 0.2 1.089 0.0118 0.045 0.795

Table 7 Optimization results of buffet

magnitude with different relaxation coefficients

ζcl ζk ζcd cl cd A k

0.01 0 0.01 1.051 0.0121 0.022 0.865
0.01 0 0.1 1.051 0.0121 0.022 0.865
0.01 0 0.2 1.047 0.0109 0.043 0.865
0.01 0.08 0.01 1.047 0.0116 0.033 0.795
0.01 0.08 0.1 1.047 0.0116 0.033 0.795
0.01 0.08 0.2 1.047 0.0108 0.046 0.795
0.05 0 0.01 1.089 0.0119 0.042 0.865
0.05 0 0.1 1.089 0.0119 0.042 0.865
0.05 0 0.2 1.089 0.0109 0.060 0.865
0.05 0.08 0.01 1.088 0.0123 0.049 0.795
0.05 0.08 0.1 1.088 0.0123 0.049 0.795
0.05 0.08 0.2 1.088 0.0109 0.067 0.795

Table 8 Design parameters for optimal airfoils s�cd and s�A

Parameters G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

s�cd 0.430 0.316 0.459 −0.176 0.227 0.297 −0.835 0.991 −0.346 −0.099
s�A 0.471 0.156 4.418 −0.164 0.123 0.845 −0.614 0.921 −0.096 −0.186
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compare the computational results with the surrogate model
predictions.
Several observations can be made, based on the comparison

between the NN-based surrogate model results and numerical
simulations. First, good agreement between the two is achieved, with
less than 10% relative error. Second, for the time-averaged lift
coefficient and reduced frequency, the results are in excellent
agreement for both optimal airfoils (less than 1% relative error).
Finally, with regard to the discrepancies for the time-averaged drag
coefficient and buffet magnitude, the surrogate model overestimates
the two parameters by 6.3 and 9.1%, respectively, thereby providing
conservative outcomes. These observations are interpreted to mean
that the NN surrogate models provide valid approximations of the
state parameters for the small disturbance design space of the airfoils
generated. Improvements in the accuracy of the surrogate models for
the time-averaged drag and buffet magnitude are left as a fruitful
avenue for future work.

Table 9 Aerodynamic and buffet parameters for the airfoil with the

optimized time-averaged drag coefficient s�cd
cl cd A k

Surrogate model 1.047 0.0126 0.063 0.865
Numerical 1.039 0.0115 0.059 0.865
Residual �0.008 �0.0011 −0.004 0
Relative error, % 0.76 8.6 6.3 0

Table 10 Aerodynamic and buffet parameters

for the airfoil with optimized buffet magnitude s�A

cl cd A k

Surrogate model 1.051 0.0121 0.022 0.865
Numerical 1.041 0.0118 0.020 0.865
Residual �0.01 �0.0003 �0.002 0
Relative error, % 1.0 2.4 9.1 0

Table 11 Calculated aerodynamic and buffet parameters for the

OAT15A and optimized drag and buffet magnitude airfoils

cl cd A k cl∕cd
OAT15A 1.037 0.0137 0.0881 0.865 76
s�cd 1.039 0.0115 0.069 0.865 90

s�A 1.041 0.0118 0.020 0.865 88

Phase 1
Phase 2
Phase 3
Phase 4
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Fig. 14 Pressure distribution on OAT15A and optimized airfoils in

different buffet phases.
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Fig. 15 Near-field velocity magnitude contours of OAT15A and

optimized airfoils.
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C. Optimal Airfoils Based on Drag and Buffet Magnitude

The two optimal airfoils, s�cd and s
�
A, based on the minimized time-

averaged drag coefficient and buffet magnitude are compared with

the benchmark OAT15A airfoil. Table 11 shows the comparison

result.

Although the time-averaged lift coefficients and reduced

frequencies of airfoils are virtually identical, the optimal airfoils

offer some improvement over the benchmark OAT15A airfoil in

terms of the time-averaged drag coefficient. In addition, both optimal

airfoils provide significant reduction of buffet magnitude over the

OAT15A airfoil. For example, our s�A provides an impressive 70%

reduction of buffet magnitude as compared with the OAT15A airfoil.

Both of the optimal airfoils achieve this buffet magnitude

reduction by restricting the wave oscillation region. Figure 14 shows

shock oscillation from roughly 0.4 to 0.45c for s�cd , and from 0.4 to

0.41c for s�A; both are significantly smaller than the range of 0.4–0.6c

on the OAT15A airfoil. The buffet phases in Fig. 14 follow the

oscillation cycle definition in Ref. [4]: the shock starts at the leading

edge (phase 1) andmoves to the trailing point (phase 3). Phases 2 and

4 are middle points of phase 1 and phase 3. Figure 15 shows the near-

field velocity magnitude contour for OAT15A and two optimal

shapes. It shows that the magnitude of the shock wave and separation

zone is considerably reduced in the optimized shapes over the

benchmark design. The drag for the optimal airfoils is decreased from

the reduction of the intensity of the shock wave and separation zone.

Meanwhile, the reduction of the shock and separation zone intensity

reduces the unsteadiness of the flowfield, and the buffet amplitude is

reduced.

Figure 16 overlays the geometries of the three airfoils: s�cd , s
�
A, and

OAT15A. It is clear that the optimal shapes have a flatter upper

surface than the OAT15A airfoil. Such a flat surface is important for

supercritical airfoil design because it can weaken the shock and

decrease the oscillation amplitude [16]. Furthermore, our optimal

airfoils have a thinner trailing edge than the OAT15A airfoil.

Physically speaking, a thinner trailing edge creates a smaller

disturbance for the flowfield, thereby preventing the formation of

pressure divergence, which is a major source of profile drag. In

addition, the thin trailing edge can reduce the pressurewave produced

by the trailing edge. Lee [2] described the impact of the upstream

propagation of the pressure wave and feedbackmechanism for buffet

onset and the self-sustained wave oscillation. This modification can

thus effectively reduce the buffet oscillation and its magnitude.

IX. Conclusions

The present work describes a configuration optimization for a

supercritical airfoil with a transonic buffet effect. As a characteristic
transonic aerodynamics problem, buffet is caused by shock-wave/

boundary-layer interaction, and it has a strong influence on transonic

aviation. Although a full understanding of this nonlinear and
complicated fluid mechanics phenomenon is not yet available, it is

necessary to consider buffet effect in airfoil design. The objective of
the present study is to establish a hybrid optimization-/neural-

network-based surrogate modeling technique to optimize airfoils in
terms of time-averaged drag and buffet magnitude. First, a numerical

scheme is implemented to capture the buffet phenomenon. Then, an

airfoil shape modification method with 10 deg of freedom and a
second-order derivative smoothness criterion is developed. A total of

118 new airfoils are generated and simulated as the sample space for
surrogate modeling. Then, surrogate models are developed to

estimate airfoil behaviors.Next, a constrained optimization process is

applied to determine optimal profiles. Finally, the optimal shapes are
numerically analyzed, based on their computational results and their

geometry.
Some of the key findings in the present work are as follows:
1) A fine time resolution is required in numerical simulations to

accurately capture buffet magnitude.
2) A neural-network model is appropriate to model unsteady

nonlinear aerodynamic phenomena such as transonic buffet.
3) The time-averaged drag coefficient cd and buffet magnitude A

are sensitive to airfoil geometry, and it is possible to reduce them
simultaneously by configuration optimization.
4) The optimization process based on these surrogate models,

which would have been impossible with a full numerical analysis
with a genetic algorithm, is both computationally efficient and
meaningfully accurate.
5) The resultant optimal airfoils, with a flatter upper surface and

thinner trailing edge, provide meaningful improvements over the
OAT15A in terms of the reduction of the mean drag coefficient and
buffet magnitude, with the latter being the more hazardous concern.
It can be argued that there is a credible physical basis for these

computationally obtained features and, indeed, that they contribute to
meaningfully reducing buffet oscillation and its magnitude.
This work raises a series of important questions for future work.

First, it is proposed to examine the relation between uncertainty
quantification in the surrogate models and the initial set of airfoils

used in the numerical analysis (here, 118). For example, although the
current surrogate models for the time-averaged drag coefficient and

the reduced frequency are fairly accurate (R2 � 0.974 and 0.914,

respectively), their accuracy for the time-averaged lift coefficient and
buffet magnitude, although adequate, can be improved (R2 � 0.865
and 0.791, respectively). This is probably achievable by increasing
the number of initial numerical runs for a larger number of airfoils.

Second, this work is carried out at a specific design flow condition

(M � 0.73, α � 3.5 deg) for which prior experimental and
computational results are available for the OAT15A airfoil. This

restriction is, in a sense, necessary to crosscheck and validate the
method. Future work should examine the robustness of the current

optimal airfoils under a broader range of design flow conditions. The

objective is to identify and compare the buffet behavior envelope for
different airfoils across a range of flight conditions. Finally, if these

two analyses confirm the current findings (namely, the ability to
design supercritical airfoils with significantly improved buffet

behavior across a range of flight conditions), the work can be
transitioned to an experimental phase with wind-tunnel testing of the

buffet-optimized airfoils.

Appendix: Neural Network, Kriging, and Regression
Model Comparison

A comparison of the neural network surrogate, kriging, and

second-order polynomials with the backward elimination stepwise

regression method for 118 new airfoils is shown in Table A1.
Fig. 16 Geometries of buffet-optimal airfoil, drag-optimal airfoil, and

OAT15A airfoil.
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TableA1 MSEandR2 forNN surogate, kriging, and

regression methods for 118 new airfoils

Method Neural network Kriging Regression

MSE cd 1.16 × 10−7 1.30 × 10−7 1.20 × 10−7

cl 1.26 × 10−4 2.94 × 10−4 1.86 × 10−3

k 2.39 × 10−4 2.77 × 10−4 6.33 × 10−4

A 1.45 × 10−4 1.43 × 10−4 1.71 × 10−4

R2 cd 0.974 0.970 0.973
cl 0.865 0.686 0.801
k 0.914 0.900 0.772
A 0.791 0.793 0.753
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